Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Proc (Bayl Univ Med Cent) ; 37(1): 104-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174011

RESUMO

Gastroenteropancreatic neuroendocrine tumors (NETs), also historically known as carcinoids, are tumors derived of hormone-secreting enteroendocrine cells. Carcinoids may be found in the esophagus, stomach, small intestine, appendix, colon, rectum, or pancreas. The biologic behavior of carcinoids differs based on their location, with gastric and appendiceal NETs among the least aggressive and small intestinal and pancreatic NETs among the most aggressive. Ultimately, however, biologic behavior is most heavily influenced by tumor grade. The incidence of NETs has increased by 6.4 times over the past 40 years. Surgery remains the mainstay for management of most carcinoids. Medical management, however, is a useful adjunct and/or definitive therapy in patients with symptomatic functional carcinoids, in patients with unresectable or incompletely resected carcinoids, in some cases of recurrent carcinoid, and in postoperative patients to prevent recurrence. Functional tumors with persistent symptoms or progressive metastatic carcinoids despite therapy are called "resistant" tumors. In patients with unresectable disease and/or carcinoid syndrome, an array of medical therapies is available, mainly including somatostatin analogues, molecular-targeted therapy, and peptide receptor radionuclide therapy. Active research is ongoing to identify additional targeted therapies for patients with resistant carcinoids.

2.
Cancer Prev Res (Phila) ; 16(11): 595-600, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37908146

RESUMO

Rutgers Cancer Institute of New Jersey (New Brunswick, NJ) is committed to providing cancer prevention education, outreach, and clinical services in our catchment area (CA). Our approach to cancer prevention includes ongoing surveillance to better understand the CA cancer burden and opportunities for intervention, leveraging community partnerships, and vigorously engaging diverse communities to understand and address their needs. This approach considers individual, sociocultural, environmental, biologic, system, and policy-level factors with an equity lens. Rutgers Cancer Institute has had substantial impact on cancer prevention (risk reduction, screening, and early detection) over the past five years, including the development of a CA data dashboard advancing implementation of evidence-based cancer control actions by leveraging 357 healthcare and community partners (with 522 partner sites). Furthermore, we provided professional education (attendance 19,397), technical assistance to community organizations (1,875 support sessions), educational outreach for community members (87,000+ through direct education), facilitated access to preventive services (e.g., 60,000+ screenings resulting in the detection of >2,000 malignant and premalignant lesions), contributed to advances in health policy and population-level improvements in risk reduction behaviors, screening, and incidence. With longer-term data, we will assess the impact of our cancer prevention efforts on cancer incidence, downward shifts in stage at diagnosis, mortality, and disparities.


Assuntos
Relações Comunidade-Instituição , Neoplasias , Humanos , New Jersey/epidemiologia , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Educação em Saúde , Atenção à Saúde
3.
PLoS One ; 18(1): e0274243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716303

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an immunoinflammatory and hypercoagulable state that contributes to respiratory distress, multi-organ dysfunction, and mortality. Dipyridamole, by increasing extracellular adenosine, has been postulated to be protective for COVID-19 patients through its immunosuppressive, anti-inflammatory, anti-coagulant, vasodilatory, and anti-viral actions. Likewise, low-dose aspirin has also demonstrated protective effects for COVID-19 patients. This study evaluated the effect of these two drugs formulated together as Aggrenox in hospitalized COVID-19 patients. METHODS: In an open-label, single site randomized controlled trial (RCT), hospitalized COVID-19 patients were assigned to adjunctive Aggrenox (Dipyridamole ER 200mg/ Aspirin 25mg orally/enterally) with standard of care treatment compared to standard of care treatment alone. Primary endpoint was illness severity according to changes on the eight-point COVID ordinal scale, with levels of 1 to 8 where higher scores represent worse illness. Secondary endpoints included all-cause mortality and respiratory failure. Outcomes were measured through days 14, 28, and/or hospital discharge. RESULTS: From October 1, 2020 to April 30, 2021, a total of 98 patients, who had a median [IQR] age of 57 [47, 62] years and were 53.1% (n = 52) female, were randomized equally between study groups (n = 49 Aggrenox plus standard of care versus n = 49 standard of care alone). No clinically significant differences were found between those who received adjunctive Aggrenox and the control group in terms of illness severity (COVID ordinal scale) at days 14 and 28. The overall mortality through day 28 was 6.1% (3 patients, n = 49) in the Aggrenox group and 10.2% (5 patients, n = 49) in the control group (OR [95% CI]: 0.40 [0.04, 4.01], p = 0.44). Respiratory failure through day 28 occurred in 4 (8.3%, n = 48) patients in the Aggrenox group and 7 (14.6%, n = 48) patients in the standard of care group (OR [95% CI]: 0.21 [0.02, 2.56], p = 0.22). A larger decrease in the platelet count and blood glucose levels, and larger increase in creatinine and sodium levels within the first 7 days of hospital admission were each independent predictors of 28-day mortality (p < 0.05). CONCLUSION: In this study of hospitalized patients with COVID-19, while the outcomes of COVID illness severity, odds of mortality, and chance of respiratory failure were better in the Aggrenox group compared to standard of care alone, the data did not reach statistical significance to support the standard use of adjuvant Aggrenox in such patients.


Assuntos
COVID-19 , Feminino , Humanos , Combinação Aspirina e Dipiridamol , SARS-CoV-2 , Antivirais/uso terapêutico , Aspirina , Resultado do Tratamento
4.
Invest New Drugs ; 40(6): 1306-1314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264382

RESUMO

This was a two-stage phase II trial of a mTORC1/2 inhibitor (mTORC: mammalian target of rapamycin complex) Sapanisertib (TAK228) in patients with rapalog-resistant pancreatic neuroendocrine tumors (PNETs) (NCT02893930). Approved rapalogs such as everolimus inhibit mTORC1 and have limited clinical activity, possibly due to compensatory feedback loops. Sapanisertib addresses the potential for incomplete inhibition of the mTOR pathway through targeting of both mTORC1 and mTORC2, and thus to reverse resistance to earlier rapamycin analogues. In stage 1, patients received sapanisertib 3 mg by mouth once daily on a continuous dosing schedule in 28-day cycle. This trial adopted a two-stage design with the primary objective of evaluating objective tumor response. The first stage would recruit 13 patients in order to accrue 12 eligible and treated patients. If among the 12 eligible patients at least 1 patient had an objective response to therapy, the study would move to the second stage of accrual where 25 eligible and treated patients would be enrolled. This study activated on February 1, 2017, the required pre-determined number of patients (n = 13) had entered by November 5, 2018 for the first stage response evaluation. The accrual of this trial was formally terminated on December 27, 2019 as no response had been observed after the first stage accrual. Treatment-related grade 3 adverse events were reported in eight (61%) patients with hyperglycemia being the most frequent, in three patients (23%). Other toxicities noted in the trial included fatigue, rash diarrhea, nausea, and vomiting. The median PFS was 5.19 months (95% CI [3.84, 9.30]) and the median OS was 20.44 months (95% CI [5.65, 22.54]). Due to the lack of responses in Stage 1 of the study, the study did not proceed to stage 2. Thus the potential to reverse resistance was not evident.


Assuntos
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de MTOR , Inibidores de Proteínas Quinases/efeitos adversos , Neoplasias Pancreáticas/patologia , Sirolimo , Tumores Neuroectodérmicos Primitivos/tratamento farmacológico
5.
J Am Coll Surg ; 235(6): 906-912, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102508

RESUMO

BACKGROUND: Intraoperative parathyroid hormone (IOPTH) testing facilitates focused parathyroidectomy to establish biochemical cure but may be time-consuming. A dedicated immunoassay machine was relocated to the operating room for IOPTH. These data seek to determine association of operating room-based IOPTH with operative time, laboratory turnaround time (TAT), and cost. METHODS: Patients who underwent parathyroidectomy from June 2017 to February 2020 were reviewed. Clinical and demographic data, operative time, and TAT were collected. Patients were compared by operation dates pre- or post-machine acquisition. A cost model was created to evaluate cost of care before and after operating room-based testing. RESULTS: A total of 285 patients were included. Post-machine, median operative time decreased from 69 minutes (interquartile range [IQR] 60 to 84) to 57 minutes (IQR 50 to 84.5), p 0.03. Additionally, median TAT for IOPTH values (preoperative, 0, 5, 10, and 15 minutes) decreased post-machine: time preoperative, 29 minutes (IQR 23 to 40) vs 18 minutes (IQR 17 to 23.5), p < 0.001; time 0, 33 minutes (IQR 27 to 39) vs 18.5 minutes (17.5 to 21), p < 0.001; time 5 minutes, 31 minutes (IQR 26 to 36) vs 20 minutes (IQR 18.5 to 21), p < 0.001; time 10 minutes, 32 minutes (IQR 27 to 39) vs 20 minutes (IQR 18.5 to 22.5), p < 0.001; and time 15 minutes, 30 minutes (IQR 26 to 36) vs 19 minutes (IQR 17 to 21), p < 0.001. Total costs pre- and post-machine were $4,442 and $4,111, respectively. With $331 cost reduction per operation and 127 operations per year, the IOPTH machine pays for itself in 3 years, or 378 surgeries, and saves $168,589 in the machine's remaining 4-year life span. CONCLUSIONS: Operating room-based parathyroid hormone testing results in improved operating productivity by decreasing result TAT and operative time and reduces cost.


Assuntos
Hiperparatireoidismo Primário , Salas Cirúrgicas , Humanos , Duração da Cirurgia , Monitorização Intraoperatória/métodos , Hormônio Paratireóideo , Paratireoidectomia/métodos , Hiperparatireoidismo Primário/cirurgia , Estudos Retrospectivos
6.
PLoS One ; 17(7): e0271066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816490

RESUMO

As ACE2 is the critical SARS-CoV-2 receptor, we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung, and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here, after demonstrating in vitro neutralization of SARS-CoV-2 by APN01, and after obtaining preliminary evidence of its tolerability and preventive efficacy in a mouse model, we pursued development of an aerosol formulation. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers has now been initiated (NCT05065645), with subsequent Phase II testing planned for individuals with SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Aerossóis , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Animais , Ensaios Clínicos Fase I como Assunto , Cães , Humanos , Camundongos , Nebulizadores e Vaporizadores , Peptidil Dipeptidase A/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2
7.
Front Med (Lausanne) ; 9: 915367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783607

RESUMO

While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood. We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a subset of monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling. Monitoring specific dysfunctional myeloid cell subsets in peripheral blood may provide prognostic keys in COVID-19.

8.
Eur J Cell Biol ; 101(3): 151240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35623230

RESUMO

Amino Acids are not only major nutrient sources, but also serve as chemical signals to control cellular growth. Rab1A recently emerged as a key component in amino acid sensing and signaling to activate the mTOR complex1 (mTORC1). In a recently published study [1], we generated tamoxifen-inducible, conditional whole-body Rab1A knockout in adult mice. These mice are viable but develop hyperglycemia and glucose intolerance. Interestingly, Rab1A ablation selectively reduces insulin expression and pancreatic beta-cell population. Mechanistically, branched chain amino acids (BCAA), through the Rab1A-mTORC1 complex, promote the stability and nuclear localization of Pdx1, a master transcription factor that controls growth, function and identity of pancreatic beta-cells. These findings reveal a role and underlying mechanism by which amino acids control body's glucose level through a beta-cell specific function by the Rab1A-mTORC1-Pdx1 signaling axis, which has implications in both diabetes and cancer.


Assuntos
Aminoácidos , Glicemia , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Glucose , Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais
9.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511693

RESUMO

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Assuntos
COVID-19 , Vacinas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Sci Transl Med ; 14(637): eabc1600, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320003

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease. Tumors are poorly immunogenic and immunosuppressive, preventing T cell activation in the tumor microenvironment. Here, we present a microbial-based immunotherapeutic treatment for selective delivery of an immunogenic tetanus toxoid protein (TT856-1313) into PDAC tumor cells by attenuated Listeria monocytogenes. This treatment reactivated preexisting TT-specific memory T cells to kill infected tumor cells in mice. Treatment of KrasG12D,p53R172H, Pdx1-Cre (KPC) mice with Listeria-TT resulted in TT accumulation inside tumor cells, attraction of TT-specific memory CD4 T cells to the tumor microenvironment, and production of perforin and granzyme B in tumors. Low doses of gemcitabine (GEM) increased immune effects of Listeria-TT, turning immunologically cold into hot tumors in mice. In vivo depletion of T cells from Listeria-TT + GEM-treated mice demonstrated a CD4 T cell-mediated reduction in tumor burden. CD4 T cells from TT-vaccinated mice were able to kill TT-expressing Panc-02 tumor cells in vitro. In addition, peritumoral lymph node-like structures were observed in close contact with pancreatic tumors in KPC mice treated with Listeria-TT or Listeria-TT + GEM. These structures displayed CD4 and CD8 T cells producing perforin and granzyme B. Whereas CD4 T cells efficiently infiltrated the KPC tumors, CD8 T cells did not. Listeria-TT + GEM treatment of KPC mice with advanced PDAC reduced tumor burden by 80% and metastases by 87% after treatment and increased survival by 40% compared to nontreated mice. These results suggest that Listeria-delivered recall antigens could be an alternative to neoantigen-mediated cancer immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Listeria , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Morte Celular , Modelos Animais de Doenças , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Toxoide Tetânico/uso terapêutico , Microambiente Tumoral
11.
medRxiv ; 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132422

RESUMO

BACKGROUND: While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood. MAIN BODY: We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion in a patient with underlying multiple autoimmune syndrome. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a particular subset of dysfunctional monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling. CONCLUSIONS: Monitoring specific subsets of innate immune cells in peripheral blood may provide prognostic keys in severe COVID-19. Moreover, understanding disease resolution at the molecular and cellular level should contribute to identify targets of therapeutic interventions against severe COVID-19.

12.
Cancer Res Commun ; 2(10): 1197-1213, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36860703

RESUMO

Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/ß-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance: This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Regulação para Baixo/genética , Mucinas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Inflamação/genética , Fibrose , Fumar , Microambiente Tumoral , Peptídeos e Proteínas de Sinalização Intracelular
13.
Front Oncol ; 11: 718408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868914

RESUMO

BACKGROUND: Late-stage diagnosis of ovarian cancer, a disease that originates in the ovaries and spreads to the peritoneal cavity, lowers 5-year survival rate from 90% to 30%. Early screening tools that can: i) detect with high specificity and sensitivity before conventional tools such as transvaginal ultrasound and CA-125, ii) use non-invasive sampling methods and iii) longitudinally significantly increase survival rates in ovarian cancer are needed. Studies that employ blood-based screening tools using circulating tumor-cells, -DNA, and most recently tumor-derived small extracellular vesicles (sEVs) have shown promise in non-invasive detection of cancer before standard of care. Our findings in this study show the promise of a sEV-derived signature as a non-invasive longitudinal screening tool in ovarian cancer. METHODS: Human serum samples as well as plasma and ascites from a mouse model of ovarian cancer were collected at various disease stages. Small extracellular vesicles (sEVs) were extracted using a commercially available kit. RNA was isolated from lysed sEVs, and quantitative RT-PCR was performed to identify specific metastatic gene expression. CONCLUSION: This paper highlights the potential of sEVs in monitoring ovarian cancer progression and metastatic development. We identified a 7-gene panel in sEVs derived from plasma, serum, and ascites that overlapped with an established metastatic ovarian carcinoma signature. We found the 7-gene panel to be differentially expressed with tumor development and metastatic spread in a mouse model of ovarian cancer. The most notable finding was a significant change in the ascites-derived sEV gene signature that overlapped with that of the plasma-derived sEV signature at varying stages of disease progression. While there were quantifiable changes in genes from the 7-gene panel in serum-derived sEVs from ovarian cancer patients, we were unable to establish a definitive signature due to low sample number. Taken together our findings show that differential expression of metastatic genes derived from circulating sEVs present a minimally invasive screening tool for ovarian cancer detection and longitudinal monitoring of molecular changes associated with progression and metastatic spread.

14.
Elife ; 102021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749885

RESUMO

Background: Checkpoint inhibitor therapy of cancer has led to markedly improved survival of a subset of patients in multiple solid malignant tumor types, yet the factors driving these clinical responses or lack thereof are not known. We have developed a mechanistic mathematical model for better understanding these factors and their relations in order to predict treatment outcome and optimize personal treatment strategies. Methods: Here, we present a translational mathematical model dependent on three key parameters for describing efficacy of checkpoint inhibitors in human cancer: tumor growth rate (α), tumor-immune infiltration (Λ), and immunotherapy-mediated amplification of anti-tumor response (µ). The model was calibrated by fitting it to a compiled clinical tumor response dataset (n = 189 patients) obtained from published anti-PD-1 and anti-PD-L1 clinical trials, and then validated on an additional validation cohort (n = 64 patients) obtained from our in-house clinical trials. Results: The derived parameters Λ and µ were both significantly different between responding versus nonresponding patients. Of note, our model appropriately classified response in 81.4% of patients by using only tumor volume measurements and within 2 months of treatment initiation in a retrospective analysis. The model reliably predicted clinical response to the PD-1/PD-L1 class of checkpoint inhibitors across multiple solid malignant tumor types. Comparison of model parameters to immunohistochemical measurement of PD-L1 and CD8+ T cells confirmed robust relationships between model parameters and their underlying biology. Conclusions: These results have demonstrated reliable methods to inform model parameters directly from biopsy samples, which are conveniently obtainable as early as the start of treatment. Together, these suggest that the model parameters may serve as early and robust biomarkers of the efficacy of checkpoint inhibitor therapy on an individualized per-patient basis. Funding: We gratefully acknowledge support from the Andrew Sabin Family Fellowship, Center for Radiation Oncology Research, Sheikh Ahmed Center for Pancreatic Cancer Research, GE Healthcare, Philips Healthcare, and institutional funds from the University of Texas M.D. Anderson Cancer Center. We have also received Cancer Center Support Grants from the National Cancer Institute (P30CA016672 to the University of Texas M.D. Anderson Cancer Center and P30CA072720 the Rutgers Cancer Institute of New Jersey). This research has also been supported in part by grants from the National Science Foundation Grant DMS-1930583 (ZW, VC), the National Institutes of Health (NIH) 1R01CA253865 (ZW, VC), 1U01CA196403 (ZW, VC), 1U01CA213759 (ZW, VC), 1R01CA226537 (ZW, RP, WA, VC), 1R01CA222007 (ZW, VC), U54CA210181 (ZW, VC), and the University of Texas System STARS Award (VC). BC acknowledges support through the SER Cymru II Programme, funded by the European Commission through the Horizon 2020 Marie Sklodowska-Curie Actions (MSCA) COFUND scheme and the Welsh European Funding Office (WEFO) under the European Regional Development Fund (ERDF). EK has also received support from the Project Purple, NIH (U54CA210181, U01CA200468, and U01CA196403), and the Pancreatic Cancer Action Network (16-65-SING). MF was supported through NIH/NCI center grant U54CA210181, R01CA222959, DoD Breast Cancer Research Breakthrough Level IV Award W81XWH-17-1-0389, and the Ernest Cockrell Jr. Presidential Distinguished Chair at Houston Methodist Research Institute. RP and WA received serial research awards from AngelWorks, the Gillson-Longenbaugh Foundation, and the Marcus Foundation. This work was also supported in part by grants from the National Cancer Institute to SHC (R01CA109322, R01CA127483, R01CA208703, and U54CA210181 CITO pilot grant) and to PYP (R01CA140243, R01CA188610, and U54CA210181 CITO pilot grant). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/estatística & dados numéricos , Neoplasias/terapia , Humanos , Modelos Teóricos
15.
bioRxiv ; 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34676381

RESUMO

Targeted bacteriophage (phage) particles are potentially attractive yet inexpensive platforms for immunization. Herein, we describe targeted phage capsid display of an immunogenically relevant epitope of the SARS-CoV-2 Spike protein that is empirically conserved, likely due to the high mutational cost among all variants identified to date. This observation may herald an approach to developing vaccine candidates for broad-spectrum, towards universal, protection against multiple emergent variants of coronavirus that cause COVID-19.

16.
J Immunol Methods ; 499: 113165, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634317

RESUMO

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Teste em Amostras de Sangue Seco , Anticorpos Antivirais/imunologia , Sítios de Ligação , COVID-19/sangue , COVID-19/imunologia , Humanos , Vacinação
17.
bioRxiv ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545364

RESUMO

To develop a universal strategy to block SARS-CoV-2 cellular entry and infection represents a central aim for effective COVID-19 therapy. The growing impact of emerging variants of concern increases the urgency for development of effective interventions. Since ACE2 is the critical SARS-CoV-2 receptor and all tested variants bind to ACE2, some even at much increased affinity (see accompanying paper), we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here we show that intranasal administration of APN01 in a mouse model of SARS-CoV-2 infection dramatically reduced weight loss and prevented animal death. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers can now be initiated, with subsequent Phase II testing in individuals with SARS-CoV-2 infection. This strategy could be used to develop a viable and rapidly actionable therapy to prevent and treat COVID-19, against all current and future SARS-CoV-2 variants.

18.
Cancer Res ; 81(21): 5523-5539, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417201

RESUMO

Aneuploid mucinous colorectal adenocarcinoma (MAC) is an aggressive subtype of colorectal cancer with poor prognosis. The tumorigenic mechanisms in aneuploid MAC are currently unknown. Here we show that downregulation of Filamin A-interacting protein 1-like (FILIP1L) is a driver of MAC. Loss of FILIP1L increased xenograft growth, and, in colon-specific knockout mice, induced colonic epithelial hyperplasia and mucin secretion. The molecular chaperone prefoldin 1 (PFDN1) was identified as a novel binding partner of FILIP1L at the centrosomes throughout mitosis. FILIP1L was required for proper centrosomal localization of PFDN1 and regulated proteasome-dependent degradation of PFDN1. Importantly, increased PFDN1, caused by downregulation of FILIP1L, drove multinucleation and cytokinesis defects in vitro and in vivo, which were confirmed by time-lapse imaging and 3D cultures of normal epithelial cells. Overall, these findings suggest that downregulation of FILIP1L and subsequent upregulation of PFDN1 is a driver of the unique neoplastic characteristics in aggressive aneuploid MAC. SIGNIFICANCE: This study identifies FILIP1L as a tumor suppressor in mucinous colon cancer and demonstrates that FILIP1L loss results in aberrant stabilization of a centrosome-associated chaperone protein to drive aneuploidy and disease progression.


Assuntos
Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Citocinese , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Chaperonas Moleculares/genética , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34234013

RESUMO

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Assuntos
Bacteriófagos/genética , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Programas de Imunização , Administração por Inalação , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Dependovirus/genética , Armazenamento de Medicamentos , Feminino , Programas de Imunização/métodos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Estudo de Prova de Conceito , Temperatura
20.
medRxiv ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34282427

RESUMO

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and COVID-19 vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...